公式展示区

(5-3)声速计算公式
a=κRTa=\sqrt{\kappa RT}
(5-4)马赫数计算公式
M=uaM=\frac{u}{a}
(5-5)一元定常可压缩流动质量流量
qm=ρuAq_m=\rho uA
(5-17)温度比
T0T=1+κ12M2\frac{T_0}{T}=1+\frac{\kappa-1}{2}M^2
(5-18)压力比
p0p=(1+κ12M2)κκ1\frac{p_0}{p}=\left(1+\frac{\kappa-1}{2}M^2\right)^{\frac{\kappa}{\kappa-1}}
(5-19)密度比
ρ0ρ=(1+κ12M2)1κ1\frac{\rho_0}{\rho}=\left(1+\frac{\kappa-1}{2}M^2\right)^{\frac{1}{\kappa-1}}
(5-26)速度系数
λ=κ+12M2/(1+κ12M2)\lambda=\sqrt{\frac{\kappa+1}{2}M^{2}/\left(1+\frac{\kappa-1}{2}M^{2}\right)}
(5-27)马赫数与速度系数关系
M=2κ+1λ21κ1κ+1λ2M=\sqrt{\frac{2}{\kappa+1}\frac{\lambda^2}{1-\frac{\kappa-1}{\kappa+1}\lambda^2}}
(5-29)温度比与速度系数关系
τ(λ)=TT0=1κ1κ+1λ2\tau(\lambda)=\frac{T}{T_0}=1-\frac{\kappa-1}{\kappa+1}\lambda^2
(5-30)压力比与速度系数关系
Π(λ)=pp0=(1κ1κ+1λ2)κκ1\Pi(\lambda)=\frac{p}{p_0}=\left(1-\frac{\kappa-1}{\kappa+1}\lambda^2\right)^{\frac{\kappa}{\kappa-1}}
(5-31)密度比与速度系数关系
ε(λ)=ρρ0=(1κ1κ+1λ2)1κ1\varepsilon(\lambda)=\frac{\rho}{\rho_0}=\left(1-\frac{\kappa-1}{\kappa+1}\lambda^2\right)^{\frac{1}{\kappa-1}}
(5-33)速度计算公式
(5-33)u2=2κκ1RT0[1(p2p0)κ1κ](5\text{-}33) \quad u_2=\sqrt{\frac{2\kappa}{\kappa-1}RT_0\left[1-\left(\frac{p_2}{p_0}\right)^{\frac{\kappa-1}{\kappa}}\right]}
(5-34)质量流量计算公式
qm=p0A22κκ11RT0[(p2p0)2κ(p2p0)κ+1κ]q_m=p_0A_2\sqrt{\frac{2\kappa}{\kappa-1}\frac{1}{RT_0}\left[\left(\frac{p_2}{p_0}\right)^{\frac{2}{\kappa}}-\left(\frac{p_2}{p_0}\right)^{\frac{\kappa+1}{\kappa}}\right]}
(5-35)临界质量流量计算公式
qm=(2κ+1)κ+12(κ1)κRp0T0A2q_m^*=\left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{2(\kappa-1)}}\sqrt{\frac{\kappa}{R}}\frac{p_0}{\sqrt{T_0}}A_2
(5-39)截面积比与马赫数关系
AA=1M(2κ+1+κ1κ+1M2)κ+12(κ1)\frac{A}{A^*} = \frac{1}{M}\left(\frac{2}{\kappa+1}+\frac{\kappa-1}{\kappa+1}M^2\right)^{\frac{\kappa+1}{2(\kappa-1)}}
(5-45)流量函数
q(λ)=A/A=(κ+12)1κ1λ(1κ1κ+1λ2)1κ1q(\lambda)=A_* / A=\left(\frac{\kappa+1}{2}\right)^{\frac{1}{\kappa-1}}\lambda\left(1-\frac{\kappa-1}{\kappa+1} \lambda^2\right)^{\frac{1}{\kappa-1}}
(5-46)质量流量计算公式
qm=κRT0(2κ+1)κ+1κ1p0Aq(λ)q_m=\sqrt{\frac{\kappa}{R T_0}\left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{\kappa-1}} }p_0 A q(\lambda)
(5-47)y(λ)函数
y(λ)=(κ+12)1κ1λ1κ1κ+1λ2y(\lambda)=\left(\frac{\kappa+1}{2}\right)^{\frac{1}{\kappa-1}} \frac{\lambda}{1-\frac{\kappa-1}{\kappa+1} \lambda^2}
(5-49)Z(λ)函数
Z(λ)=λ+1λZ(\lambda)=\lambda+\frac{1}{\lambda}
(5-51)f(λ)函数
f(λ)=(λ2+1)(1κ1κ+1λ2)1κ1f(\lambda)=(\lambda^2+1)\left(1-\frac{\kappa-1}{\kappa+1} \lambda^2\right)^{\frac{1}{\kappa-1}}
(5-52)r(λ)函数
r(λ)=1(κ1)λ2κ+11+λ2r(\lambda)=\frac{1-\frac{(\kappa-1)\lambda^2}{\kappa+1}}{1+\lambda^2}
(5-59)正激波前后马赫数关系
M22=1+κ12M12κM12κ12M_2^2=\frac{1+\frac{\kappa-1}{2}M_1^2}{\kappa M_1^2-\frac{\kappa-1}{2}}
(5-61)正激波前后压力比关系
p2p1=2κκ+1M12κ1κ+1=1κ+1κ1λ12λ12κ+1κ1\frac{p_{2}}{p_{1}}=\frac{2\kappa}{\kappa+1}M_{1}^{2}-\frac{\kappa-1}{\kappa+1}=\frac{1-\frac{\kappa+1}{\kappa-1}\lambda_{1}^{2}}{\lambda_{1}^{2}-\frac{\kappa+1}{\kappa-1}}
(5-62)正激波前后温度比关系
T2T1=2+(κ1)M12(κ+1)M12(2κκ+1M12κ1κ+1)=1λ121κ+1κ1λ12λ12κ+1κ1 \frac{T_{2}}{T_{1}}=\frac{2+(\kappa-1)M_{1}^{2}}{(\kappa+1)M_{1}^{2}}\left(\frac{2\kappa}{\kappa+1}M_{1}^{2}-\frac{\kappa-1}{\kappa+1}\right)=\frac{1}{\lambda_{1}^{2}}\frac{1-\frac{\kappa+1}{\kappa-1}\lambda_{1}^{2}}{\lambda_{1}^{2}-\frac{\kappa+1}{\kappa-1}}

计算器内容区